Why SkipList

目前经常使用的平衡数据结构有:B树,红黑树,AVL树等。
想象一下,给你一张草稿纸,一只笔,一个编辑器,你能立即实现一颗红黑树,或者AVL树出来吗? 很难吧,这需要时间,要考虑很多细节,要参考一堆算法与数据结构之类的树,还要参考网上的代码,相当麻烦。
跳表是一种随机化的数据结构,目前开源软件 Redis 和 LevelDB 都有用到它,它的效率和红黑树以及 AVL 树不相上下,但跳表的原理相当简单,只要你能熟练操作链表,就能轻松实现一个 SkipList。

What SkipList Do

考虑一个有序表:

从该有序表中搜索元素 < 23, 43, 59 > ,需要比较的次数分别为 < 2, 4, 6 >,总共比较的次数
为 2 + 4 + 6 = 12 次。有没有优化的算法吗? 链表是有序的,但不能使用二分查找。类似二叉
搜索树,我们把一些节点提取出来,作为索引。得到如下结构:

这里我们把 < 14, 34, 50, 72 > 提取出来作为一级索引,这样搜索的时候就可以减少比较次数了。
我们还可以再从一级索引提取一些元素出来,作为二级索引,变成如下结构:

这里元素不多,体现不出优势,如果元素足够多,这种索引结构就能体现出优势来了。

SkipList

下面的结构是就是跳表:
其中 -1 表示 INT_MIN, 链表的最小值,1 表示 INT_MAX,链表的最大值。

跳表具有如下性质:

  • 由很多层结构组成
  • 每一层都是一个有序的链表
  • 最底层(Level 1)的链表包含所有元素
  • 如果一个元素出现在 Level i 的链表中,则它在 Level i 之下的链表也都会出现。
  • 每个节点包含两个指针,一个指向同一链表中的下一个元素,一个指向下面一层的元素。

Search in SkipList


例子:查找元素 117

  • 比较21,比21大,往后面找
  • 比较37,比37大,比链表最大值小,从37的下面一层开始找
  • 比较71,比71大,比链表最大值小,从71的下面一层开始找
  • 比较85,比85大,从后面找
  • 比较117,等于117,找到了节点。

Insert into SkipList

先确定该元素要占据的层数 K(采用丢硬币的方式,这完全是随机的)
然后在 Level 1 … Level K 各个层的链表都插入元素。
例子:插入 119, K = 2

如果 K 大于链表的层数,则要添加新的层。
例子:插入 119, K = 4

Decide the K

插入元素的时候,元素所占有的层数完全是随机的,通过一下随机算法产生:

1
2
3
4
5
6
int random_level() {
K = 1;
while (random(0,1))
K++;
return K;
}

相当与做一次丢硬币的实验,如果遇到正面,继续丢,遇到反面,则停止,
用实验中丢硬币的次数 K 作为元素占有的层数。显然随机变量 K 满足参数为 p = 1/2 的几何分布,
K 的期望值 E[K] = 1/p = 2. 就是说,各个元素的层数,期望值是 2 层。

Delete in SkipList

在各个层中找到包含 x 的节点,使用标准的 delete from list 方法删除该节点。
例子:删除 71